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Abstract
The separability modulus �(ρ) of a state ρ of an arbitrary finite composite
quantum system is the largest t in [0, 1] such that t · ρ + (1 − t) · τ is separable,
where τ is the normalized trace. The basic properties of �, introduced by Vidal
and Tarrach in another guise, are briefly established. With these properties, we
obtain conditions on the spectrum of a state which imply that it is separable. As
a consequence, we show that for any Hamiltonian H the thermal equilibrium
states e−H/T / Tr(e−H/T ) are separable if T is large enough. Also, for F a
unitarily invariant, convex continuous real-valued function on states, for which
F(ρ) > F(τ) whenever ρ �= τ , there is a critical CF such that F(ρ) � CF

implies that ρ is separable, and for each possible c > CF there are entangled
states φ with F(φ) = c. This class includes all strictly convex unitarily
invariant continuous functions, and also every non-trivial partial eigenvalue-
sum. Some CF are computed. General upper and lower bounds for CF are
given, and then improved for bipartite systems.

PACS numbers: 03.67.−a, 03.65.Ud

1. Introduction

Quantum state entanglement is a key feature of quantum information processing procedures
[1]. This has fuelled the mathematical studies of entanglement in the last ten years or so.

Consider a finite level quantum system described by a complex Hilbert space H of finite
dimension d. Let B(H) be the linear operators from H into itself equipped with the operator
norm. An operator a ∈ B(H) is termed positive, written as a � 0, if 〈ψ, aψ〉 � 0 for all
ψ ∈ H. An application of polarization identity shows that a � 0 implies that a is self-adjoint.
A state ρ on B(H) is a linear function ρ : B(H) → C which is positive, that is, a � 0
implies ρ(a) � 0, and normalized ρ(1) = 1, where 1 is the identity operator. It follows that
ρ(a∗) = ρ(a). The state space S(H) or simply S is the set of all states. S is a convex subset
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of the set of linear functionals on B(H) which is compact with respect to the topology defined
by the norm of linear functionals f given by ‖f ‖ = sup{|f (a)|/‖a‖ : 0 �= a ∈ B(H)}. All
continuity statements made in the present paper refer to this topology.

The extremal points ext(S) are precisely the pure states or vectorial states given by
ρ(a) = 〈ψ, aψ〉 for some unit vector ψ ∈ H. We reserve the term ‘pure’ for these
states. The decomposition of a mixed ρ ∈ S as a convex sum ρ = ∑M

j=1 tj ρ
(j), where

tj > 0,
∑M

j=1 tj = 1 and the ρ(j) are pure states, is never unique; there are always uncountably
many such decompositions with finite M. Among these convex decompositions into pure states,
the spectral decompositions are those for which the pure states ρ(j) involved are pairwise
orthogonal meaning that the associated vectors {ψj } are pairwise orthogonal. For a spectral
decomposition one has M � d and the spectral decomposition is unique iff all the weights
(non-zero eigenvalues of the density operator, see below) tj > 0 involved are distinct.

Now there is a well-known (and in finite dimension elementary) representation theorem
for states which states that every ρ ∈ S is given by ρ(a) = Tr(Dρa) where Dρ is a unique
density operator; that is, Dρ � 0 and Tr(Dρ) = 1. The density operators B+

1 (H) clearly form
a convex set which turns out to be compact with respect to the trace norm on B(H) given by
‖a‖1 = Tr(|a|). The formulae ρ(a) = Tr(Dρa), ρ ∈ S, and ρD(a) = Tr(Da),D ∈ B+

1 (H),
implement a bijective affine homeomorphism between the compact convex sets S and B+

1 (H).
One has ext

(
B+

1 (H)
) = {p ∈ B(H) : p = p∗ = p2, rank(p) = 1}, i.e., the orthoprojectors

onto the one-dimensional subspaces of H. The spectral theorem applied to Dρ provides a
spectral decomposition of ρ. In what follows, we often identify ρ with the associated density
operator.

Given N � 2 finite-dimensional Hilbert spaces Hj of dimension dj � 2 (j =
1, 2, . . . , N), the composite quantum system—whose constituents are the quantum systems
described by Hj —is described by the tensor product H = H1 ⊗ H2 ⊗ · · · ⊗ HN which has
dimension D = d1d2 · · · dN . Given a state ρ ∈ S we can define a state of B(Hj ) by

ρ[j ](a) = ρ(11 ⊗ 12 ⊗ · · · ⊗ 1j−1︸ ︷︷ ︸
j−1 identity factors

⊗a ⊗ 1j+1 ⊗ · · · ⊗ 1N︸ ︷︷ ︸
N−j identity factors

), a ∈ B(Hj ).

A state ρ is said to be a product-state if

ρ(a1 ⊗ a2 ⊗ · · · ⊗ aN) = ρ[1](a1)ρ
[2](a2) · · · ρ[N](aN),

for all a1 ∈ B(H1), all a2 ∈ B(H2), . . . , and all aN ∈ B(HN). Clearly, a product-state exhibits
no correlations whatsoever among the constituent subsystems. The product-states in S are
denoted by Sprod and they are closed.

Given states ρj of B(Hj ), the map

(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)(a1 ⊗ a2 ⊗ · · · ⊗ aN) = ρ1(a1)ρ2(a2) · · · ρN(aN),

aj ∈ B(Hj ), admits a unique extension (by linearity and continuity) to a state of B(H) which
is denoted by ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN . Thus, ρ ∈ Sprod iff ρ = ρ[1] ⊗ ρ[2] ⊗ · · · ⊗ ρ[N].

We come to the basic definitions. Recall that the convex hull co(K) of a subset K of a
convex set is the collection of all finite convex sums of elements of K. A state ρ ∈ S is said to
be separable, or unentangled, if it lies in the convex hull co(Sprod) of the product-states. We
write Ssep for the separable states. Due to the finite dimension, Ssep = co(Sprod) is a closed
and thus compact subset of S. The extremal points of Ssep, ext(Ssep), are precisely the pure
product-states ext(S) ∩ Sprod. Thus in analysing the separability of a given ρ ∈ S one can
restrict oneself to the convex decompositions of ρ into pure states. As mentioned, there are
uncountably many such finite decompositions and, in general, the spectral decomposition(s) of
a separable state are not decompositions into product-states. This is what makes the problem



Spectral conditions and separability 619

of deciding whether a state is separable or not a very subtle problem. A state is called
entangled if it is not separable; that is, if it cannot be decomposed into a convex sum of (pure)
product-states.

At present there are finite algorithms deciding whether a given state is entangled or not,
only for two qubits (N = 2 with d1 = d2 = 2; Wootters’ criterion [3], PPT criterion, [4])
and for N = 2 with d1 = 2 and d2 = 3 (PPT criterion, [4]). Gurvits [5] has shown that the
separability problem is NP-hard in the category of computational complexity theory.

Here we present some very elementary arguments and basic facts which nevertheless
allow us to isolate simple conditions on the spectrum of a density operator of an arbitrary
finite composite quantum system guaranteeing that the state is separable. One of the basic
ingredients of our arguments is not new: If τ is the normalized trace which is a product-state
(hence separable) and ρ is any state, how large can t get before t · ρ + (1 − t) · τ becomes
entangled? This question underlies the work of Życzkowski et al [6], Vidal and Tarrach [2],
and other authors. Here we proceed backwards, in as much as we do not extend previous
work, but use very elementary methods which require almost no precise information about
entanglement to extract some general results, which seem to have been overlooked. We show
that for any unitarily invariant, convex (or concave) real-valued function F on states, for
which F(ρ) = F(τ) implies ρ = τ , there exists a critical value CF such that F(ρ) � CF

(F(ρ) � CF in the concave case) implies that ρ is separable. The class of functions with
this separating property includes all unitarily invariant strictly convex or concave continuous
functions, and also the non-trivial partial eigenvalue-sums (which define the ‘more mixed
than’ partial ordering of states [7]). Another simple result is that for any Hamiltonian of an
arbitrary composite quantum system, there are finite critical temperatures T +

c � 0 and T −
c � 0

such that the thermal equilibrium state exp(−H/T )/ Tr(exp(−H/T )) is separable if T � T +
c

or T � T −
c . With precise entanglement information, as is available or obtainable for N = 2,

the results of this paper can be considerably improved and sharp bounds can be obtained for
the critical values mentioned. Some results in this direction are obtained here, but work on
this is in progress.

The organization of the paper is as follows. Section 2 and its subsections, where the
composite structure is irrelevant, present some basic facts about global spectral properties of
states and introduce a representation, the gap representation, of a state which turns out to be
useful. In section 3, we turn to composite systems and, in section 3.1, we introduce and present
basic material about the separability modulus of a state (the critical t of the above paragraph);
this quantity has been studied extensively in another guise by Vidal and Tarrach [2]. In
section 3.2 we obtain some simple spectral conditions which are sufficient for separability.
The rest of the subsections of section 3 deal with the mentioned application to thermal states
and unitarily invariant convex functions with the separation property. In section 4, we use
available direct or indirect information about the modulus of separability for bipartite systems
to make precise the results of section 3. The symbol � indicates the end of a proof.

2. The global spectral properties of states

In this section, we consider states for some fixed d-dimensional Hilbert spaceHwith d � 2 and
abbreviate Bd = B(H) and Sd = S(H). We write τd for the state given by the normalized trace
τd(a) = Tr(a)/d, a ∈ Bd . We often identify the state with the density operator associated with
it. For any self-adjoint operator A ∈ Bd write spec(A) = (a1, a2, . . . , ad) for the vector in R

d

whose entries are the eigenvalues of A taking into account their multiplicities and numbered
non-increasingly: a1 � a2 � · · · � ad .
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2.1. The spectral simplex

If ρ is a state of Bd with spec(ρ) = (λ1, λ2, . . . , λd) then 1 � λ1 � λ2 � · · · � λd � 0, and∑d
j=1 λj = 1. We write s−(ρ) for the minimal eigenvalue of ρ; it satisfies s−(ρ) � 1/d there

being equality iff ρ = τd .
We introduce the set of all possible spec’s of states

Ld :=
(λ1, λ2, . . . , λd) : λ1 � λ2 � · · · � λd � 0,

d∑
j=1

λj = 1

 ,

and have that Ld is the image of Sd under the map spec. If u ∈ Bd is unitary and ρ ∈ Sd , then
ρu defined by ρu(a) = ρ(u∗au) is a state; and spec(ρu) = spec(ρ). We say K ⊆ Sd

is unitarily invariant if ρ ∈ K implies ρu ∈ K for every unitary u ∈ Bd . The map
spec : Sd → Ld is continuous (use singular value inequalities [8], or alternatively the
second resolvent equation). The ordering required in the definition of the map spec prevents it
form being affine; for example, if ρ1, ρ2 are pairwise orthogonal pure states then spec(ρ1) =
spec(ρ2) = (1, 0, . . . , 0), spec(t · ρ1 + (1 − t) · ρ2) = (max{t, 1 − t}, min{t, 1 − t}, 0, . . . , 0).

The geometric structure of Ld is simple. It is a (d − 1)-simplex, that is, a convex set with
d extremal points such that the decomposition of every one of its points into a convex sum of
extremal points is unique.

Proposition 1. Ld is a compact convex subset of R
d and a (d − 1)-simplex. The d extremal

points are given by the vectors

e(k) = (1/k, 1/k, . . . , 1/k︸ ︷︷ ︸
k times

, 0, . . . , 0), k = 1, 2, . . . , d.

If λ = (λ1, λ2, . . . , λd) ∈ Ld then λ = ∑d
j=1 xj e

(j), where

xj = j (λj − λj+1), j = 1, 2, . . . , d − 1, xd = dλd,

and
∑d

j=1 xj = 1.

If xj � 0 for j = 1, 2, . . . , d and
∑d

j=1 xj = 1, then

d∑
j=1

xj e
(j) =

 d∑
k=1

xk/k,

d∑
k=2

xk/k, . . . ,

d∑
k=j

xk/k, . . . , xd/d

 ,

that is, the j th component of
∑d

j=1 xj e
(j) is

∑d
k=j xk/k.

Proof. Convexity and compactness are clear. We show that e(k) is extremal for each
k = 1, 2, . . . , d. Suppose x, y ∈ Ld and 0 < t < 1. If e(k) = tx + (1 − t)y then

xj = yj = 0, for j = k + 1, k + 2, . . . , d

and, thus txj +(1−t)yj = 1/k for j = 1, 2, . . . , k, and x1 +x2 +· · ·+xk = y1 +y2 +· · ·+yk = 1.
But then, for j = 1, 2, . . . , k − 1 we have

t (xj − xj+1) + (1 − t)(yj − yj+1) = 0,

which implies xj = xj+1 and yj = yj+1 for all j = 1, 2, . . . , k−1 and thus xj = yj = 1/k for
all j = 1, 2, . . . , k. Hence x = y = e(k) proving that e(k) is extremal. In order to prove that
there are no other extremal points it suffices to show that every λ ∈ Ld is a convex combination
of these d extremal points. Now,

d∑
j=1

xj e
(j) =

(
d∑

�=1

x�

�
,

d∑
�=2

x�

�
, . . . ,

d∑
�=k

x�

�
, . . . ,

xd

d

)
;

and the equation
∑d

j=1 xj e
(j) = λ for arbitrary λ ∈ Ld can be solved for the xj recursively
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giving

xd = dxd, xj = j (λj − λj+1), j = 1, 2, . . . , d − 1,

which are unique. Clearly xj � 0 for all j = 1, 2, . . . , d and
d∑

j=1

xj = dλd +
d−1∑
j=1

j (λj − λj+1) = dλd +
d−1∑
j=1

jλj −
d∑

�=2

(� − 1)λ�

= dxd +
d−1∑
j=1

(j − (j − 1))λj − (d − 1)λd =
d∑

j=1

λj = 1.

�

Recall the theory of majorization for vectors in Ld [7, 8]. The connections with
entanglement are reviewed in [9]. Define the kth partial sum �k(λ) of λ ∈ Ld by �k(λ) =∑k

j=1 λj (k = 1, 2, . . . , d), which is affine in λ. Agree that for λ,µ ∈ Ld , λ � µ means that
�k(λ) � �k(µ) for every k = 1, 2, . . . , d. We observe that e(d) � e(d−1) � · · · � e(2) � e(1).
Now setting �k(ρ) = �k(spec(ρ)), k = 1, 2, . . . , d, these maps are convex continuous
functions on Sd . One says that the state ρ is more mixed (more chaotic) than the state φ,
and writes ρ � φ, if �k(ρ) � �k(φ) for k = 1, 2, . . . , d. An intrinsic characterization is
provided by Uhlmann’s theorem: ρ � φ iff ρ ∈ co{φu : u ∈ Bd unitary}. Another very useful
characterization which we will constantly use is

ρ � φ iff F(ρ) � F(φ) for every unitarily invariant, convex continuous F . (1)

The non-increasing ordering of the components of a λ ∈ Ld imposes a number of bounds
on the components of λ and on the partial sums �k(λ). These are particularly immediate if
one uses the (baricentric) coordinates xj , λ = ∑d

j=1 xj e
(j), of λ. The following is an example:

Lemma 1. For λ = (λ1, . . . , λd) ∈ Ld , one has the following:

(i) d−1 � λ1 � 1; with equality on the left-hand-side inequality iff λ = e(d), and on the right-
hand-side inequality iff λ = e(1). For each k ∈ {2, . . . , d}, 0 � λk � k−1 with equality
on the left-hand-side inequality iff λ ∈ co(e(1), . . . , e(k−1)), and on the right-hand-side
inequality iff λ = e(k).

(ii) For each k ∈ {1, 2, . . . , d}, kd−1 � �k(λ) � 1. For k < d one has equality on
the left-hand-side inequality iff λ = e(d), and on the right-hand-side inequality iff
λ ∈ co(e(1), . . . , e(k)).

Proof. Let λ = ∑d
j=1 xj e

(j); one has xj � 0 and
∑d

j=1 xj = 1. Since λk = ∑d
j=k xj /j one

has

d−1
d∑

j=k

xj �
d∑

j=k

xj /j � k−1
d∑

j=k

xj � k−1.

One has �k(λ) = ∑k
j=1 xj + k

∑d
j=k+1 xj/j where the second sum is absent if k = d.

Thus

kd−1 = kd−1

 k∑
j=1

xj +
d∑

j=k+1

xj

 � kd−1
k∑

j=1

xj + k

d∑
j=k+1

xj/j

�
k∑

j=1

xj + k

d∑
j=k+1

xj/j �
k∑

j=1

xj + k(k + 1)−1
d∑

j=k+1

xj

= 1 − (k(k + 1))−1
d∑

j=k+1

xj � 1.
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The inequality �k(λ) � 1 is strict unless
∑d

j=k+1 xj = 0, that is to say,
∑k

j=1 xj = 1, or
λ ∈ co(e(1), . . . , e(k)). The inequality kd−1 � �k(λ) is strict unless k = d, or xd = 1. �

2.2. The gap representation of a state

Given a state ρ with spec(ρ) = (λ1, λ2, . . . , λd) ∈ Ld consider an orthonormal basis
{ψj : j = 1, 2, . . . , d} of Hd consisting of eigenvectors ψj of the density matrix associated
with ρ. Then ρ = ∑d

j=1 λj ·ρ(j), where the pure states ρ(j) are given by ρ(j)(a) = 〈ψj , aψj 〉,
a ∈ Bd . This corresponds to a spectral decomposition into pairwise orthogonal pure states
which is not unique if ρ has degenerate eigenvalues.

Proposition 2. Let {ρ(j) : j = 1, 2, . . . , d} be a maximal family of pairwise orthogonal pure
states of Bd . The set

{∑d
j=1 λj · ρ(j) : (λ1, λ2, . . . , λd) ∈ Ld

}
is affinely homeomorphic to

Ld . Thus it is a compact convex subset of the state space of Bd and a (d − 1)-simplex with the
d extremal points given by the states

ρ̂ (j) = j−1
j∑

k=1

ρ(k), j = 1, 2, . . . , d.

One has ρ̂ (d) = τd , and

d∑
j=1

λj · ρ(j) =
d−1∑
j=1

µj(λ) · ρ̂ (j) + dλd · τd, (2)

where

µj(λ) = j (λj − λj+1) � 0, j = 1, 2, . . . , d − 1, (3)

and
∑d−1

j=1 µj(λ) = 1 − dλd .

Proof. If 0 � t � 1, and ρ, φ ∈ {∑d
j=1 λjρ

(j) : (λ1, λ2, . . . , λd) ∈ Ld

}
with spec(ρ) = λ

and spec(φ) = µ, we have

t · ρ + (1 − t) · φ = t ·
d∑

j=1

λj · ρ(j) + (1 − t) ·
d∑

j=1

µj · ρ(j) =
d∑

j=1

(tλj + (1 − t)µj ) · ρ(j)

and thus spec(t · ρ + (1 − t) · φ) = t · spec(ρ) + (1 − t) · spec(φ). The converse is also true,
and spec is an affine homeomorphism from

{∑d
j=1 λj · ρ(j) : (λ1, λ2, . . . , λd) ∈ Ld

}
onto Ld .

Apply proposition 1. �

We call the representation of a state ρ given by (2) the gap representation of ρ due to
formula (3) which involves the successive eigenvalue gaps. This representation is not unique
in as much as the spectral decomposition is not unique when one has spectral degeneracies.
But any multiplicities, if present, are automatically taken care of by the states ρ̂ (j). Note that
ρ̂ (j)ρ̂ (k) = (1/ max{j, k})ρ̂ (min{j,k}). These algebraic equations are characteristic of a gap
representation as follows:

Lemma 2. If k ∈ {1, 2, . . . , d} and ω1, ω2, . . . , ωk are k distinct states with

(i) for every j ∈ {1, 2, . . . , k} there is s(j) ∈ {1, 2, . . . , d} such that j1 �= j2 implies
s(j1) �= s(j2); i.e., s is an injection from {1, 2, . . . , k} into {1, 2, . . . , d},

(ii) ωjωm = (1/ max{s(j), s(m)})ωs−1(min{s(j),s(m)}) for every j,m ∈ {1, 2, . . . , k},
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then there is a maximal family {ρ(n) : n = 1, 2, . . . , d} of pairwise orthogonal pure states
such that ωj = ρ̂ (s(j)) for every j = 1, 2, . . . , k.

Proof. The s(j) are all distinct and the s(j)ωj = Ps(j) are orthoprojectors of rank
s(j) which satisfy Ps(j)Ps(m) = Pmin{s(j),s(m)}. Renumerate the ωj so that 1 � s(1) <

s(2) < · · · < s(k) � d; then Ps(j)Ps(m) = Ps(min{j,m}). Choose an orthonormal set
{ψn : n = 1, 2, . . . , s(1)} spanning the range of Ps(1), and then, successively, orthonormal sets
{ψn : n = s(j)+1, . . . , s(j +1)} spanning the range of Ps(j+1) −Ps(j), for j = 1, 2, . . . , k−1.
Finally, choose an orthonormal set {ψn : n = s(k) + 1, . . . , d} spanning the kernel of Ps(k).
Then if ρ(n) denotes the pure state associated with the vector ψn, n = 1, 2, . . . , d, we have
ωj = ρ̂ (s(j)). �

The gap representation has a number of features which turn out to be useful in the
discussion of entanglement. The states ρ̂ (j), which are the vertices of the (d − 1)-simplex,
obtained from different maximal families of pairwise orthogonal pure states are unitarily
equivalent. For j < d they have only two eigenvalues 0 (with multiplicity d − j ) and 1/j

(with multiplicity j ). This will considerably simplify the discussion of their separability in
composite systems.

2.3. Unitarily invariant convex functions on S

Consider a real-valued function F defined on Sd which is unitarily invariant, convex, i.e.,
F(t · ρ + (1 − t) · φ) � tF (ρ) + (1 − t)F (φ), for every t ∈ [0, 1] and every ρ, φ ∈ Sd ,
and continuous. Let F+ := sup{F(ρ) : ρ ∈ Sd}; by continuity and compactness there is a
maximizer.

Proposition 3. If F : Sd → R is a unitarily invariant convex function then:

(i) For every ρ ∈ Sd ,

F(τd) � F(ρ) � F+. (4)

Moreover F(ρ) = F+ for every pure state ρ.
(ii) For each c ∈ [F(τd), F+] the level set Lc := {ρ ∈ S : F(ρ) � c} is a compact, convex,

unitarily invariant subset of S. If ρ � φ ∈ Lc then ρ ∈ Lc. Moreover, Lc ⊆ Lb if c < b.
(iii) If F is strictly convex then there is equality on the left-hand-side inequality of equation (4)

iff ρ = τd ; and there is equality on the right-hand-side inequality of equation (4) iff ρ is
pure. Moreover, ext(Lc) = {ρ ∈ S : F(ρ) = c}.

Proof. The reader is asked to verify the triviality of (i) and (ii) for a constant F. We thus
assume that F is not constant.

Since, for every state ρ and every pure φ, one has τd � ρ � φ, inequality (4) follows from
equation (1), and F+ = F(φ). Suppose F is strictly convex and ρ �= τd satisfies F(ρ) = F(τd),
then F(τd) � F(t · ρ + (1 − t) · τd) < tF (ρ) + (1 − t)F (τd) = F(τd), a contradiction. This
and the definition of F+ prove equation (4) and part of statement (iii); statement (ii) is clear.

Suppose F is strictly convex. If ρ ∈ Lc but ρ /∈ ext(Lc), then ρ = t · φ + (1 − t) · ω

with 0 < t < 1, φ, ω ∈ Lc and φ �= ω; thus F(ρ) < tF (φ) + (1 − t)F (ω) � c.
This proves {ρ : F(ρ) = c} ⊆ ext(Lc). For c = F+ we conclude that F(ρ) = F+

implies that ρ is pure. It remains to show that ext(Lc) ⊆ {ρ : F(ρ) = c}. If
c = F(τd) then LF(τd ) = {τd} = {ρ : F(ρ) = F(τd)}. We assume that c > F(τd) and
F(ρ) < c and show that ρ is not extremal in Lc. Take any gap representation of ρ, then
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ρ = to · ρ̂ (1) + (1 − to) · ω with spec(ω) ∈ co(e(2), . . . , e(d)) and to ∈ [0, 1]. The map
[0, 1] � t → f (t) = F(t · ρ̂ (1) + (1 − t) ·ω is strictly convex since, for u, t1, t2 ∈ [0, 1]

fφ(ut1 + (1 − u)t2) = F((ut1 + (1 − u)t2) · ρ̂ (1) + (1 − (ut1 + (1 − u)t2)) · ω)

= F(u · (t1 · ρ̂ (1) + (1 − t1) · ω) + (1 − u) · (t2 · ρ̂ (1) + (1 − t2) · ω)

� uF(t1 · ρ̂ (1) + (1 − t1) · ω) + (1 − u)F (t2 · ρ̂ (1) + (1 − t2) · ω)

= uf (t1) + (1 − u)f (t2),

and the inequality is strict if 0 < u < 1 and t1 �= t2 by the strict convexity of F and the fact that
t1·ρ̂ (1)+(1−t1)·ω �= t2·ρ̂ (1)+(1−t2)·ω. Moreover, if 1 � t1 > t2 � 0 then t2·ρ̂ (1)+(1−t2) · ω �
t1 · ρ̂ (1) + (1 − t1) · ω since this is equivalent to (t1 − t2)(�k(ρ̂

(1)) − �k(ω)) � 0, and the
latter follows from ω � ρ̂ (1). But then by equation (1), f (t2) = F(t2 · ρ̂ (1) + (1 − t2) · ω) �
F(t1 · ρ̂ (1) + (1 − t1) ·ω) = f (t1) so that fφ is non-decreasing. But a strictly convex, non-
decreasing function must be increasing. Thus F(ω) = f (0) � f (to) = F(ρ) < c � F+;
let t∗ be the unique number in [0, 1] such that f (t∗) = c it follows that to < t∗ and thus
ρ = to · ρ̂ (1) + (1 − to) · ω = (to/t∗) · (t∗ · ρ̂ (1) + (1 − t∗) · ω) + (1 − (to/t∗)) · ω is not extremal
in Lc since f (0) = F(ω) < c and F(t∗ · ρ̂ (1) + (1 − t∗) · ω) = f (t∗) = c. �

3. Spectral conditions implying separability

We return to the discussion of arbitrary compositions of finite quantum systems as described
in the introduction. Given integers d1, d2, . . . , dN all of which are larger or equal to 2, and N
Hilbert spaces Hj of dimension dj , consider H = H1 ⊗H2 ⊗ · · · ⊗HN which has dimension
D = d1d2 · · · dN . We identify B = B(H) with Bd1 ⊗ Bd2 ⊗ · · · ⊗ BdN

. A state ρ of B is
separable if it lies in the convex hull of the product-states of B; otherwise it is called entangled.
Ssep denotes the separable states.

3.1. The separability modulus: generalities

We observe that τD = τd1 ⊗ τd2 ⊗ · · ·⊗ τdN
so that τ ≡ τD is a product-state, hence separable.

τ is also the maximally mixed state of B. Given any state ρ of B and any t ∈ [0, 1], we let

ρt = (1 − t) · τ + t · ρ.

We then ask ourselves: When is ρt separable?
Frequently, in what follows, we use the fact that if ω, ϕ are both separable states then

t · ω + (1 − t) · ϕ is separable for every t ∈ [0, 1] because Ssep is convex.
We observe that if ρ is separable then ρt is separable for every t ∈ [0, 1]. In fact,

Lemma 3.

(i) ρt is separable for every t ∈ [0, 1] iff ρ is separable;
(ii) if ρt is separable for some t ∈ (0, 1] then ρs is separable for every s ∈ [0, t];

(iii) if ρs is entangled for some s ∈ (0, 1] then ρt is entangled for every t ∈ [s, 1].

Proof. Statement (i) is clear. Suppose 0 � s � t � 1, then 0 � s/t � 1 and

ρs = s · ρ + (1 − s) · τ = s

t
· (t · ρ + (1 − t) · τ) +

(
1 − s

t

)
· τ = s

t
· ρt +

(
1 − s

t

)
· τ.

Under the hypotheses of (ii), ρs is separable as a convex sum of two separable states. Under
the hypotheses of (iii), ρs would be separable if ρt were separable. �
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The above allows us to introduce the modulus of separability of ρ (with respect to τ ) as
the number

�(ρ) = sup{t ∈ [0, 1] : ρt is separable}.
Vidal and Tarrach [2] have studied the quantity �(ρ)−1 − 1 which they called the random

robustness of entanglement. Most of the results below are explicitly or implicitly given by
them so the rest of this section is a streamlined exposition of the basic facts about � that we
need. For more information the reader should consult [2].

Lemma 4. If t ∈ [0, 1] then �(ρt ) = min{1, t−1�(ρ)} for every state ρ.

Proof. A straightforward calculation gives (ρt )s = ρts . Suppose that t > 0, then

�(ρt ) = sup{s ∈ [0, 1] : (ρt )s isseparable}
= sup{s ∈ [0, 1] : ρts is separable}
= sup{r/t ∈ [0, 1] : ρr is separable}
= t−1 sup{r ∈ [0, t] : ρr is separable}.

If t < �(ρ) the last supremum is t. If �(ρ) � t the last supremum is �(ρ). With the usual
interpretation, the formula remains valid for t = 0 since ρ0 = τ and �(τ) = 1. �

Lemma 5. ρ�(ρ) is separable.

Proof. For t < �(ρ) we have ρ�(ρ) − ρt = (�(ρ) − t) · (ρ − τ) and thus ‖ρ�(ρ) − ρt‖ =
(�(ρ)−t)‖ρ−τ‖. Taking a sequence {tn : n = 1, 2, . . .} with tn < �(ρ) and limn→∞ tn = �(ρ),
we have ρtn ∈ Ssep and limn→∞ ρtn = ρ�(ρ) and hence ρ�(ρ) lies in the closure of Ssep which is
closed. �

Corollary 1. ρt is separable iff t � �(ρ).

Lemma 6. If 0 < tj � 1 for j = 1, 2, . . . ,M with M ∈ N, and
∑M

j=1 tj = 1, then

�

 M∑
j=1

tj · ρ(j)

 � min{�(ρ(j)) : j = 1, 2, . . . ,M}

for any set of M states {ρ(j) : j = 1, 2, . . . , M}.
Proof. The following proof does not use the previous result. Let ω = ∑M

j=1 tj · ρ(j); then

ωt = t · ω + (1 − t) · τ =
M∑

j=1

tj (ρ
(j))t .

If t < to := min{�(ρ(j)) : j = 1, 2, . . . ,M}, the states (ρ(j))t are all separable and thus ωt

is separable; by definition of �, �(ω) � t . Taking the supremum with respect to t < to one
obtains the result. �

A substantial improvement of the above lower bound would be concavity of �. Examples
for two qubits show that this is not the case. However, ρ → (1/�(ρ)) turns out to be convex.

Consider

L := inf{�(ρ) : ρ ∈ S};
due to lemma 6, the infimum can be taken over the pure states. Moreover, L < 1 since there
are entangled pure states. L has been computed in various cases [2, 10, 11]. For our purposes



626 G A Raggio

it would suffice to know that L > 0, and Życzkowski et al [6] give an elegant proof of this.
Rungta [10], for d1 = d2 = · · · = dN (using the methods of [11]) obtained (to handle the case
of distinct dimensions dj we just embed Bdj

in Bd by adding the necessary rows and columns
of zeros)

L � 1

1 + d2N−1
, d = max{d1, d2, . . . , dN },

while Vidal and Tarrach [2] obtained

L � 1

(1 + D/2)N−1
.

The second bound is exact for N = 2 while the Rungta bound is poor for this case.
As N increases, the first bound eventually exceeds the second one and becomes the better
lower bound on L. The best lower bounds for L can be obtained using the results of
Gurvits and Barnum [12–14] on the separable balls around the trace in the Frobenius norm
X → ‖X‖2 = √

Tr(X∗X); for example, from corollary 3 of [13],

L � 2

2N/2
√

D(D − 1)
.

Proposition 4. 1/� is convex.

Proof. Convexity of 1/� is

�(t · ρ(1) + (1 − t) · ρ(2))−1 � t�(ρ(1))−1 + (1 − t)�(ρ(2))−1,

or equivalently

�(t · ρ(1) + (1 − t) · ρ(2)) � �(ρ(1))�(ρ(2))

t�(ρ(2)) + (1 − t)�(ρ(1))
.

Put �j := �(ρ(j)) and s = �1�2/(t�2 + (1 − t)�1). Observe that s � 0 and s �
�1�2/ max{�1, �2} = min{�1, �2} � 1. Thus, by corollary 1, convexity is proved if we
show that (t · ρ(1) + (1 − t) · ρ(2))s is separable. But

(t · ρ(1) + (1 − t) · ρ(2))s = s · (t · ρ(1) + (1 − t) · ρ(2)) + (1 − s) · τ

=
(

�1�2t

t�2 + (1 − t)�1

)
· ρ(1) +

(
�1�2(1 − t)

t�2 + (1 − t)�1

)
· ρ(2) + (1 − s) · τ.

Put

r :=
(

�2t

t�2 + (1 − t)�1

)
;

which is in [0, 1]. Then

1 − r =
(

�1(1 − t)

t�2 + (1 − t)�1

)
, (1 − s) = 1 − r�1 − (1 − r)�2,

so that

(t · ρ(1) + (1 − t) · ρ(2))s = r�1 · ρ(1) + (1 − r)�2 · ρ(2) + (1 − r�1 − (1 − r)�2) · τ

= r · (�1 · ρ(1) + (1 − �1) · τ) + (1 − r) · (�2 · ρ(2) + (1 − �2) · τ)

= r · (ρ(1))�1 + (1 − r) · (ρ(2))�2 ,

which is separable by lemma 5. �
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The convexity of 1/� gives an improvement on the lower bound of lemma 6:

Corollary 2. If 0 < tj � 1 for j = 1, 2, . . . , M with M ∈ N, and
∑M

j=1 tj = 1, then

�

 M∑
j=1

tj · ρ(j)

 �

 M∑
j=1

tj

�(ρ(j))

−1

� min{�(ρ(j)) : j = 1, 2, . . . ,M}

for any set of N states {ρ(j) : j = 1, 2, . . . , M}. There is equality on the right-hand-side
inequality iff all �(ρ(j)) are equal.

Although the convexity bound is saturated when all ρ(j) are separable it is a rather poor
bound when at least one of the ρ(j) is entangled as we will see below.

Proposition 5. � is upper semi-continuous.

Proof. We have to show that the sets Kx = {ρ : �(ρ) � x} are closed for every real x. These
sets are empty for x > 1 and are the whole space of states for x � 0. Otherwise, for x ∈ (0, 1]
we have ρx ∈ Ssep for every ρ ∈ Kx . If the sequence {ρ(n) : n = 1, 2, . . .} ⊂ Kx converges to
ρ then the sequence

{
ρ(n)

x : n = 1, 2, . . .
}

is in Ssep and converges to ρx . Thus, since Ssep is
closed, ρx is separable and thus �(ρ) � x so ρ ∈ Kx . �

Thus ρ → E(ρ) := (1/�(ρ)) − 1 is a bona fide measure of entanglement in as much as
it is convex and lower semi-continuous, and it is zero iff ρ is separable. As mentioned, Vidal
and Tarrach [2] have studied E extensively and computed it in a number of particular cases.

Upper semi-continuity of � and compactness of S imply that there exists a state ρ such that
�(ρ) = L. Any state with this property will be called maximally entangled and is automatically
pure (the relationship with other notions of what a maximally entangled pure state is, needs
yet to be explored).

3.2. Putting the gap representation to work

We can now use the gap representation to obtain our weakest result of the type described by
the title of the paper:

Theorem 1. If s−(ρ) � (1 −L)/D then ρ is separable. For every s with 0 � s < (1 −L)/D

there is an entangled state φ such that s−(φ) = s.

Proof. Let spec(ρ) = (λ1, λ2, . . . , λD); if the condition on λD = s−(ρ) is met the gap
representation gives

ρ =
D−1∑
j=1

µj(λ) · ρ̂ (j) + Ds−(ρ) · τ

= (1 − Ds−(ρ)) ·
D−1∑

j=1

µj(λ)

1 − Ds(ρ)
· ρ̂ (j)


︸ ︷︷ ︸

φ

+Ds−(ρ) · τ

= (1 − Ds−(ρ)) · φ + Ds−(ρ) · τ = φ1−Ds−(ρ);
but 1 − Ds−(ρ) � L and thus (1 − Ds−(ρ)) � �(φ) which implies that ρ = φ1−Ds−(ρ) is
separable.
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Take any maximally entangled state ω, then ωt is separable iff t � L, and, because ω

is pure, s−(ωt ) = (1 − t)/D. For any s ∈ [0, (1 − L)/D) the state ω1−Ds is entangled and
s−(ω1−Ds) = s. �

We observe that, in the language of section 2.1, the theorem states that

{ρ : �D−1(ρ) � (D + L − 1)/D} ⊆ Ssep.

An immediate improvement of the weak result above would follow if it were true that
every state ρ with spec(ρ) = e(D−1) is separable. This has been proved for N = 2, d1 = 2
and d2 = 2, 3 by [6] (see also appendix A of [15] for a more direct approach), and in general
for N = 2 by Gurvits and Barnum [12] (see the following section 4). How the separability of
ρ with spec(ρ) = e(D−1) can be used to improve theorem 1 is shown in appendix B.

Another useful feature of the gap representation is that it provides an improvement on the
convexity bound of corollary 2 obtained from any spectral decomposition of a state:

Lemma 7. Let spec(ρ) = (λ1, λ2, . . . , λD) ∈ LD and

ρ =
D∑

j=1

λj · ρ(j) =
D−1∑
j=1

µj(λ) · ρ̂ (j) + DλD · τ

be a gap representation. Then

�(ρ) �

D−1∑
j=1

j (λj − λj+1)

�(̂ρ(j))
+ DλD

−1

�

 D∑
j=1

λj

�(ρ(j))

−1

.

Proof. Let us abbreviate �(ρ(j)) = �j and �(ρ̂ (j)) = �̂j . Applying corollary 2 to the gap
representation and observing that �̂D = 1 we get

�(ρ) �

D−1∑
j=1

µj(λ)

�̂j

+ DλD

−1

.

The other inequality is equivalent to

D∑
j=1

λj

�j

�
D−1∑
j=1

µj(λ)

�̂j

+ DλD,

which we now prove. Another application of corollary 2 gives

1/̂�j � j−1
j∑

k=1

(1/�j ), j = 1, 2, . . . ,D;

thus

D−1∑
j=1

µj(λ)

�̂j

+ DλD �
D−1∑
j=1

µj(λ)

j

(
j∑

k=1

(1/�k)

)
+ λD

(
D∑

k=1

(1/�k)

)

=
D−1∑
j=1

(λj − λj+1)

(
j∑

k=1

(1/�j )

)
+ λD

(
D∑

k=1

(1/�k)

)
=

D∑
j=1

λj/�j . �
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3.3. An application to thermal states

Given any self-adjoint h ∈ B and β ∈ R consider the (thermal equilibrium) state ρβ given by
the density operator

ρβ =
{
τ if β = 0
exp(−βh)/ Tr(exp(−βh)) if β �= 0.

One has limβ→0 ρβ = τ and the expectation is that for |β| sufficiently small one will have
separability of ρβ . This is indeed the case.

Proposition 6. There are real numbers β±
c with β−

c < 0 < β+
c such that ρβ is separable for

β ∈ [
β−

c , β+
c

]
, and if I is any interval that contains

[
β−

c , β+
c

]
properly, then there is β ′ ∈ I

such that ρβ ′ is entangled.

Proof. Assume β �= 0 and put Z(β) = Tr(e−βh) = ∑D
j=1 e−βεj , where spec(h) =

(ε1, . . . , εD). Take β > 0; then Z(β) � D e−βs−(h) where s−(h) is the minimal eigenvalue of
h. Now s−(ρβ) = e−βs+(h)Z(β)−1 � D−1 exp(−β(s+(h)−s−(h)), where s+(h) is the maximal
eigenvalue of h. If

exp{−β(s+(h) − s−(h))} � (1 − L),

the hypothesis of theorem 1 is met and we conclude that ρβ is separable. But s+(h) > s−(h)

unless h is a multiple of 1 in which case ρβ = τ for every β. Thus, ρβ will be separable if

β � βo := −ln(1 − L)

s+(h) − s−(h)
.

An analogous argument in the case β < 0 shows that ρβ is separable if β � −βo. Define

β+
c = sup{β > 0 : ργ is separable for every γ ∈ [0, β]},

β−
c = inf{β < 0 : ργ isseparable for every γ ∈ [β, 0]};

then β−
c < −βo < 0 < βo < β+

c . Moreover, since β → ρβ is continuous ρβ±
c

is separable as
a limit of separable states. �

Observe that β+
c = ∞ and β−

c = −∞ are possible, for example, when all spectral
orthoprojectors of h are products.

A beautiful result of Uhlmann and Wehrl [7, 16] states that β → ρβ is �-decreasing for
positive β (�-increasing for negative β): ρβ1 � ρβ2 if 0 � β1 < β2. The limit β → ±∞
of ρβ is the state ρ±∞ = P∓/m∓ where P− (respectively P+) is the orthoprojection onto the
eigenspace of the minimal eigenvalue s−(h) (respectively the maximal eigenvalue s+(h)) of
the Hamiltonian and m− (respectively m+) is its multiplicity. If ρ∞ is entangled (e.g., m− = 1
and the ground-state vector is not a product-vector), then β+

c < ∞. What happens above β+
c ?

This is considered in [17].

3.4. Unitarily invariant convex functions as separability detectors

We use the definitions and notation of 2.3. A function F on the state space of a composite
system is said to be good if F(ρ) = F(τ) implies that ρ = τ . In particular, F cannot be
constant. By proposition 3, every unitarily invariant strictly convex continuous function is
good. Also, any kth eigenvalue partial sum �k with k < D is good by lemma 1.

If F : S → R is unitarily invariant, convex and continuous, the numbers

C+
L = F(L · φ + (1 − L) · τ), φ pure;

C−
L = F(L · ω + (1 − L) · τ), spec(ω) = e(D−1),
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are well defined. To see that C−
L � C+

L, take an ω with spec(ω) = e(D−1) and take any gap
representation of ω; the state ρ̂ (1) is pure and ω � ρ̂ (1) so that C−

L = F(L · ω + (1 − L) · τ) �
F(L · ρ(1) + (1 − L) · τ) = C+

L. Also C−
L = F(L ·ω + (1 − L) · τ) � F(τ) because of

proposition 3, with strict inequality if F is good; and C+
L � LF(φ) + (1 − L)F(τ) =

LF+ + (1−L)F(τ) � F+, with strict inequality for non-constant F. The reason for introducing
these numbers is

Theorem 2. If F : S → R be a unitarily invariant, convex, continuous and good function,
then there is a number CF in

[
C−

L , C+
L

]
such that Lc ⊂ Ssep for every c ∈ [F(τ), CF ], whereas

for every c′ ∈ (CF , F+] there is an entangled state ρ with F(ρ) = c′.

There is of course a version of the above for unitarily invariant, concave, continuous and
good functions, i.e., entropies that deserve their name. The statement is then {ρ : F(ρ) � c} ⊆
Ssep if c � CF . The above result shows that every unitarily invariant continuous and good
function on S which is convex or concave provides us with a separability detector. The list of
separability detectors includes, apart from the kth partial sums for k = 1, 2, . . . , D − 1, the
von Neumann entropy S(ρ) = Tr(ρ ln(ρ)), the Rényi entropies, the functions F(ρ) = Tr(ρq)

with q > 0, etc.
The rest of this section is devoted to the proof of this theorem, and to the computation of

the bounds C±
L for some especially interesting F.

By proposition 3, the level sets Lc are closed and convex for every c ∈ [F(τ), F+] and
not empty since τ ∈ Lc always. The basic observation is

Lemma 8. If F is good and τ �= ρ ∈ S, then the map [0, 1] � t → fρ(t) = F(t ·ρ+(1−t)·τ)

is increasing, and convex.

Proof. fρ is constant for F(ρ) = F(τ); otherwise, by convexity of F, it is convex and, by
goodness, it assumes its minimal value F(τ) precisely at t = 0. It follows that the map is
increasing. �

Let ρ be a maximally entangled state; then it is pure and F(L · ρ + (1 − L) · τ) = C+
L.

By the above lemma, for every F+ � c > C+
L there is a (unique) t > L such that

F(t · ρ + (1 − t) · τ) = fρ(t) = c and t · ρ + (1 − t) · τ is entangled. This shows that
for every c > C+

L, Lc is not contained in Ssep but contains an entangled state φ with F(φ) = c.
Let C = {c ∈ [F(τ), F+] : Lc ⊆ Ssep}. Then C is not empty because LF(τ) = {τ } ⊆ Ssep.

Put CF = sup(C)
(
�C+

L

)
, and K = ∪c∈CLc.

We first show that CF � C−
L . Suppose that ρ ∈ LC−

L
then ρ = t · φ + (1 − t) · τ = φt

with t ∈ [0, 1] and spec(φ) ∈ co(e(1), . . . , e(D−1)) in a gap representation. If t = 0
then ρ = τ which is separable. If 0 < t < 1, let σ = ρ̂ (D−1) then σ � φ and thus
t · σ + (1 − t) · τ � t · φ + (1 − t) · τ = ρ, which implies

fφ(t) = F(t · φ + (1 − t) · τ) = F(ρ) � C−
L

= F(L · σ + (1 − L) · τ) � F(L · φ + (1 − L) · τ) = fφ(L).

The lemma then implies that t � L and thus ρ = φt is separable.
We now show that K = LCF

. By the definitions of K and CF , K ⊆ LCF
and since LCF

is closed, the closure K of K is contained in LCF
. Also, K ⊆ Ssep, and since Ssep is closed,

K ⊆ Ssep. The claim is proved by showing that LCF
⊆ K. Suppose τ �= ρ ∈ LCF

. Then for
every 0 � t < 1, F (t · ρ + (1 − t) · τ) = fρ(t) < F(ρ) � CF by the lemma, so for such t
t · ρ + (1 − t) · τ ∈ K. Take an increasing sequence {tn} in [0, 1) with limn→∞ tn = 1. Then
ρn = tn · ρ + (1 − tn) · τ ∈ K and limn→∞ ρn = ρ so that ρ ∈ K. This proves that CF satisfies
the required properties and CF � C+

L. This completes the proof of the theorem.
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We will see that the bound C−
L is very poor and needs to be substantially improved in order

to pin down CF (cf, section 4). This requires detailed information about the least separability
modulus of the states ρ̂ (j) as one goes through the maximal families of pairwise orthogonal
pure states.

Theorem 1 states that the critical value of the (D − 1)th partial eigenvalue-sum is
1 − (1 − L)/D. Let us denote the critical value of the kth partial eigenvalue-sum �k function
by C[k]. The computation of C±

L for the kth partial sums is immediate, and one gets

Proposition 7. For k = 1, 2, . . . , D − 1, k
(

L
D−1 + 1−L

D

)
� C[k] � k 1−L

D
+ L.

Note that the bounds coalesce for k = D − 1 to C[D − 1] = 1 − (1 − L)/D recovering
theorem 1.

The unitarily invariant strictly convex function F(ρ) = Tr(ρ2) is among the simplest
separability detectors as it does not require spectral information to be calculated. C±

L can be
easily computed leading to

Proposition 8. The critical value CF for the trace of the square satisfies D−1+L2

D(D−1)
� CF �

L2(D−1)+1
D

.

Proof. For any ρ, we have (t · ρ + (1 − t) · τ)2 = t2 · ρ2 + 2t (1 − t) · ρτ + (1 − t)2τ 2 =
t2 ·ρ2 +(2t (1−t)/D)·ρ+((1−t)2/D)τ ; hence F(t ·ρ+(1−t)·τ) = t2F(ρ)+(1−t2)/D. If ρ

is pure F(ρ) = 1 and thus C+
L = L2 +(1−L2)/D. If spec(ρ) = e(D−1) and F(ρ) = (D−1)−1,

whence C−
L = F(L · ρ + (1 − L) · τ) = (L2/(D − 1)) + (1 − L2)/D. �

Similar calculations can be carried out for other F ′s, for example, the von Neumann
entropy.

4. Bipartite systems

For N = 2 detailed entanglement information is available or obtainable. Notably, the results
of Vidal and Tarrach [2] imply (recall D = d1d2)

L = 2/(2 + D). (5)

We can thus specify the characteristic parameters and bounds entering the results obtained in
section 3.

Proposition 9. For N = 2, one has

(i) k(D + 1)/(D + 2)(D − 1) � C[k] � (k + 2)/(D + 2) for k = 1, 2, . . . ,D − 2 and
C[D − 1] = (D + 1)/(D + 2).

(ii) The critical value CF for F(ρ) = Tr(ρ2) satisfies

D(D + 3)

(D − 1)(2 + D)2
� CF � D + 8

(2 + D)2
.

(iii) The critical value CS of the von Neumann entropy satisfies

ln(2 + D) − 3

2 + D
ln(3) � CS � ln(D + 2) − D + 1

D + 2
ln

(
D + 1

D − 1

)
.

But for the trace of the square (item (ii) in the above result), Gurvits and Barnum do much
better [12]:
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Proposition 10 (Gurvits and Barnum). For N = 2,

(i) Tr(ρ2) � 1/(D − 1) implies that ρ is separable; Moreover, for any c with 1/(D − 1) <

c � 1 there is an entangled state ω with Tr(ω2) = c;
(ii) if Tr(ρ2) > 1/(D − 1) then

�(ρ) � 1√
(D − 1)(D Tr(ρ2) − 1)

.

Thus the critical value of CF for F = Tr(·2) is 1/(D − 1) for N = 2. Moreover, if
spec(ρ) = e(D−1) then Tr(ρ2) = 1/(D − 1) so that ρ is separable.

This new bit of separability information immediately leads to the following improvement
on the lower bound for the critical value of theorem 2:

Proposition 11. If F is either a unitarily invariant, strictly convex continuous function or
one of �k(·) for k = 1, 2, . . . , D − 1, on the states of a bipartite system, then

CF � inf
t∈[0,1]

{F(t · σ + (1 − t)L · ω + (1 − t)(1 − L) · τ },

where spec(σ ) = e(D−1), spec(ω) = e(D−2) with ωσ = ω/(D − 1).

This is proved in appendix B.
The computation of the above infimum is often quite straightforward. In the case of

the partial eigenvalue-sums it is easily done and leads to the following improvement of
proposition 9:

Proposition 12. For N = 2, kD/(D2 − 4) � C[k] � (k + 2)/(D + 2) for k = 1, . . . , D − 3,
and C[D − 2] = D/(D + 2).

We can also improve theorem 1 as follows:

Theorem 3. For a bipartite system, if spec(ρ) = (λ1, . . . , λD) and 3λD + (D − 1)λD−1 � 1
then ρ is separable. For each s ∈ [0, 1) there are entangled states with 3λD +(D−1)λD−1 = s.

This is a consequence of proposition 13 of appendix B, proposition 10 and equation (5).
Note that the map G defined on states of a (bipartite) system via spec(ρ) = (λ1, . . . , λD) by
G(ρ) = 3λD + (D − 1)λD−1 = 3 + (D − 4)�D−1(ρ) − (D − 1)�D−2(ρ) is unitarily invariant
and continuous, but is not expected to be convex or concave.

5. Final comments

With no other specific entanglement information other than 1 > L > 0 we have obtained
conditions on the spectrum of a state which guarantee its separability. These conditions are
either direct restrictions on the spectrum or are hidden in the critical level set of unitarily
invariant, convex, good continuous functions. Only the spectrum is needed to compute
the values of such functions. We have also exemplified how more detailed entanglement
information leads to less restrictive spectral conditions.

The problem of improving the results, in particular the bounds on CF , seems worthy
of pursuit. Exact values of L for N > 2 are not available. Further progress would come
if something precise can be said about the following. It is not difficult to show that there
are entangled states ρ with spec(ρ) = e(2), and Gurvits and Barnum have shown that
spec(ρ) = e(D−1) implies the separability of ρ in bipartite (N = 2) systems. Where in
the spectral chain e(D−1) � e(D−2) � · · · � e(2) is the cut separable/entangled? The solution
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of this problem will enhance the use of the gap representation to deal with entanglement
problems.

For a fixed compositum, call F the collection of the unitarily invariant, convex, good
continuous functions on the state space. Take an F ∈ F and apply the F-test: reject the
state ρ if F(ρ) � CF . You are left with the states passing the test {ρ : F(ρ) > CF }; this
includes all pure states, in particular the pure product-states. Take another G ∈ F and do
the G-test on {ρ : F(ρ) > CF } which outputs {ρ : F(ρ) > CF } ∩ {ρ : G(ρ) > CG}.
When you exhaust F you are left with ∩F∈F {ρ : F(ρ) > CF } which still contains all
pure states, hence all pure separable states. Does one have ∩F∈F {ρ : F(ρ) > CF } =
{ρ is entangled} ∪ {ρ is a pure separable state}? To put it another way: If ρ is separable but
not pure, is there an F ∈ F such that F(ρ) � CF ? As the analysis of entanglement in
thermal equilibrium states shows [17], the answer to the questions is unfortunately no: there
are separable, mixed states that cannot be detected by F .
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Appendix A. Proof of theorem 3 and proposition 11

Both results below are proved under the hypothesis that

if spec(ρ) = e(D−1), then ρ is separable. (A.1)

This has been proved (proposition 10) for N = 2 by Gurvits and Barnum [12].

Proposition 13. Assume (A.1). Then, if spec(ρ) = (λ1, λ2, . . . , λD) and(
1 − (1 − L)(D − 1)

D

)
λD +

(1 − L)(D − 1)

D
λD−1 � (1 − L)/D; (A.2)

it follows that ρ is separable. Moreover, for every s ∈ [0, (1 − L)/D) there is an entangled
state ρ where the left-hand side of (A.2) is equal to s.

Before proving this, we observe that the left-hand side of inequality (A.2) is larger than
or equal to λD , so we recover theorem 1.

Proof. Take any gap representation ρ = ∑D
j=1 tj ρ̂

(j). Let t = tD−1, and s = ∑D−2
j=1 tj ; then

t + s = 1 − tD .
If t = 0 then

ρ =
D−2∑
j=1

tj · ρ̂ (j) + (1 − s) · τ = s · ω + (1 − s) · τ, (A.3)

where

ω =
D−2∑
j=1

tj

s
· ρ̂ (j), if s > 0.

If 1 > t > 0, then

ρ = t · σ + (1 − t) · (r · ω + (1 − r) · τ) (A.4)
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where r = s/(1 − t), ω is as above when s > 0, and σ = ρ̂ (D−1) is separable by (A.1). If
t = 1, then ρ = σ is separable.

If now s � L(1 − t), we have the following alternatives: (1) t = 0 and s � L, in which
case equation (A.3) implies that ρ is separable; (2) 1 > t > 0 and r � L in which case
equation (A.4) implies that ρ is separable; and (3) t = 1 in which case ρ = σ is separable.
Thus s � L(1 − t) implies that ρ is separable.

But since s = 1 − t − tD this inequality is equivalent to (1 − L)(1 − t) � tD . In the
notation of proposition 2, tj = µj(λ) is given by (3). Thus, we get (1 − L)(1 − (D −
1)(λD−1 − λD) � DλD which is (A.2).

Take a maximally entangled state φ which is pure and suppose 0 � s < (1 − L)/D,
then 1 � 1 − sD > L and the state φ1−sD = (1 − sD) · φ + sD · τ is entangled and has
spec(φ1−sD) = (1 − sD + s, s, s, . . . , s); we see that the left-hand side of (A.2) is equal to s.

�

The improvement on the lower bound for the critical value of a unitarily invariant, convex,
good continuous function is the following:

Proposition 14. Assume (A.1). If F is either a unitarily invariant strictly convex, continuous
function, or one of the �k(·) with k = 1, 2, . . . ,D − 1, then its critical value is not below the
number

inf
t∈[0,1]

{F(t · σ + (1 − t)L · ω + (1 − L)(1 − t) · τ)},

where spec(ω) = e(D−2), spec(σ ) = e(D−1), with ωσ = ω/(D − 1).

Proof. Consider a unitarily invariant, convex continuous function F. Refer to the previous
proof, whose notation t, s, r, ω, σ we keep. We have

ρ = t · σ + (1 − t) · (r · ω + (1 − r) · τ) = t · σ + s · ω + (1 − t − s) · τ)

with s = r(1 − t) � (1 − t). Note that spec(ω) ∈ co(e(1), . . . , e(D−2)).
The first observation is that t ′ · σ + (1 − t ′)r ′ · ρ̂ (D−2) + (1 − r ′)(1 − t ′) · τ �

t ′ · σ + (1 − t ′)r ′ · ω + (1 − r ′)(1 − t ′) · τ for all t ′, r ′ ∈ [0, 1]; indeed this is equivalent
to (1 − t ′)r ′(�k(ω) − �k(ρ̂

(D−2))) � 0 for k = 1, 2, . . . ,D; and this is satisfied because
ρ̂ (D−2) � ω. �

The other basic observation here is

Lemma 9. Suppose F satisfies the hypothesis of the proposition and 0 � t ′ < 1. Then the
map [0, 1 − t ′] � s ′ → fω,σ (s ′; t ′) = F(s ′ · ω + t ′ · σ + (1 − t ′ − s ′) · τ) is increasing and
convex.

Proof. If s1, s2 ∈ [0, 1 − t ′] and u ∈ [0, 1] then us1 + (1 − u)s2 ∈ [0, 1 − t ′] and

(us1 + (1 − u)s2) · ω + t ′ · σ + (1 − (us1 + (1 − u)s2) − t ′) · τ

= u · (s1. · ω + t ′ · σ + (1 − s1 − t ′) · τ)

+ (1 − u) · (s2. · ω + t ′ · σ + (1 − s2 − t ′) · τ)

so that

fω,σ (us1 + (1 − u)s2; t ′)
= F((us1 + (1 − u)s2) · ω + t ′ · σ + (1 − (us1 + (1 − u)s2) − t ′) · τ)

= F(u · (s1 · ω + t ′ · σ + (1 − s1 − t ′) · τ)
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+ (1 − u) · (s2 · ω + t ′ · σ + (1 − s2 − t ′) · τ))

� uF(s1 · ω + t ′ · σ + (1 − s1 − t ′) · τ)

+ (1 − u)F (s2 · ω + t ′ · σ + (1 − s2 − t ′) · τ)

= ufω,σ (s1; t ′) + (1 − u)fω,σ (s2; t ′),

so fω,σ (·; t ′) is convex. Moreover, if F is strictly convex then the inequality is strict
for 0 < u < 1 and s1 �= s2 by proposition 3, since s1 · ω + t ′ · σ + (1 − s1 − t ′) · τ �=
s2 ·ω + t ′ · σ + (1 − s1 − t ′) · τ .

We now prove that fω,σ (·; t ′) is increasing. If 0 � s1 < s2 � (1 − t ′), then s1 · ω +
t ′ · σ + (1 − s1 − t ′) · τ � s2 · ω + t ′ · σ + (1 − s2 − t ′) · τ because the partial sums �k satisfy
(k = 1, 2, . . . , D)

�k(s
′ · ω + t ′ · σ + (1 − t ′ − s ′) · τ) = s ′�k(ω) + t ′�k(σ) + (1 − t ′ − s ′)�k(τ ),

and

�k(s1 · ω + t ′ · σ + (1 − s1 − t ′) · τ) � �k(s2 · ω + t ′ · σ + (1 − s2 − t ′) · τ)

is equivalent to

(s2 − s1)�k(ω) � (s2 − s1)�k(τ ),

which is always satisfied because τ � ρ for every state ρ. Equation (1) implies that

F(s1 · ω + t · σ + (1 − s1 − t) · τ) � F(s2 · ω + t ′ · σ + (1 − s2 − t ′) · τ), or

fω,σ (s1; t ′) � fω,σ (s2; t ′).

But as a non-decreasing convex function, fω,σ (·; t ′) must be constant up to a certain s∗ � 1
and increasing for s � s∗. We have

s∗ = sup{s ′ ∈ [0, 1] : fω,σ (s ′; t ′) = fω,σ (0, ; t ′)}.
If now F is strictly convex then s∗ = 0. Suppose F = �k(·) for some k = 1, 2, . . . ,D − 1.
Then fω,σ (s∗; t ′) = fω,σ (0; t ′) is equivalent to s∗(�k(ω) − k/D) = 0 and lemma 1 implies
that s∗ = 0. �

Put H for the infimum that is claimed to be a lower bound for CF , and assume that
F(ρ) � H . If t = 1 we have ρ = σ which is separable. Otherwise, by the definition of H
and the first observation,

fω,σ (s; t) = F(ρ) � H � F(t · σ + (1 − t)L · ρ̂ (D−2) + (1 − t)(1 − L) · τ)

� F(t · σ + (1 − t)L · ω + (1 − t)(1 − L) · τ) = fω,σ (L(1 − t); t).

And, by the lemma, s � L(1 − t) which implies r � L and the separability of ρ follows from
(A.3) or (A.4). Thus CF � H . This proves the claim.

A detailed analysis of the proof above suggests the introduction of a condition on unitarily
invariant convex functions which we propose in appendix B.

Appendix B. k-good functions

Suppose F is a unitarily invariant, convex continuous function. Take an arbitrary maximal
family {ρ(j) : j = 1, 2, . . . , d} of pairwise orthogonal pure states. F is determined by
its values in

{∑d
j=1 λjρ

(j) : λ ∈ Ld

}
. Fix k ∈ {1, 2, . . . , d − 1} and suppose spec(ω) ∈

co(e(1), e(2), . . . , e(d−k)). For t1, t2, . . . , tk−1 ∈ [0, 1] with t = t1 + t2 + · · · + tk−1 � 1 consider
f (s) = F(s · ω +

∑k−1
j=1 tj · ρ̂ (d−k+j) + (1 − t − s) · τ), for s ∈ [0, 1 − t], which is convex.



636 G A Raggio

Now, if 1 − t � s > s ′ � 0, it follows that s ′ · ω +
∑k−1

j=1 tj · ρ̂ (d−k+j) + (1 − t − s ′) · τ �
s · ω +

∑k−1
j=1 tj · ρ̂ (d−k+j) + (1 − t − s) · τ , and by equation (1), f is non-decreasing. We say

that F is k-good if f (s) > f (0) for s > 0. By the convexity of f this is equivalent to saying
that f is increasing.

The proof of the last proposition of the previous appendix will in fact work if F is 2-good.

Proposition 15. If F is a unitarily invariant, convex , continuous function then it is good iff it
is 1-good. If F is unitarily invariant, continuous and either strictly convex or one of the �k(·)
for some k = 1, 2, . . . , d − 1, then F is p-good for every p = 1, 2, . . . , d − 1.

Proof. 1-goodness is F(s · ρ + (1 − s) · τ) > F(τ) for s > 0 for every ρ with spec(ρ) ∈
co(e(1), . . . , e(d−1)). This property follows iff F is good.

No matter what p is, if F is strictly convex, the map f will be strictly convex and it then
follows that it is increasing.

If F = �k for some k = 1, 2, . . . , d − 1, then, for any p = 1, 2, . . . , d − 1, f (s) = f (0)

is equivalent to s(�k(ω) − �k(τ)) = 0 for spec(ω) ∈ co(e(1), . . . , e(d−p)); which implies
s = 0 by lemma 1. �
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